

Machine Name: 1612

**Machine ID:** 

# **COMPREHENSIVE COOLANT ANALYSIS**

**Component Information** Coolant: PEA Fleet Charge 50/50

Coolant Chemistry: EG, Nitrite SCA Machine MFG: **CUMMINS** 

Machine MOD:

Machine Criticality: Unknown

**Sample Information** Received: 5/17/2021 Report: 5/21/2021 Sample No. 6392-17-5

Analyst / Test: MMM / CLCOMP

Sample Source Rating: Unknown

**Customer Information** 

Jack Boilerman **Great Lakes Fleet** 20338 Progress Drive Strongsville, OH 44149

### **PROBLEMS**

Different Additives Wrong Color

### COMMENTS

Coolant is a different color than reference new coolant. Coolant should match the color of the original manufacturer/product specifications. Probable causes of color change include improper coolant mixing, glycol deterioration, outside contaminants, and/or precipitation of inhibitors out of coolant. The organic additives present do not correlate with additives present in new reference coolant. This may be due to a different product in use, or a mixture of products in use. Mixing of different coolant products is not recommended, and can result in lack of corrosion protection for metal components and/or formation of deposits.

Last fluid change on 5/10/2021 CUSTOMER NOTES

| SSST SIMER IN STEE                    | CUSTOMER NOTES Last fluid change on 5/10/2021 |            |           |  |  |  |  |  |  |            |
|---------------------------------------|-----------------------------------------------|------------|-----------|--|--|--|--|--|--|------------|
| Sample Date                           | New Fluid                                     | 5/14/2021  | 3/31/2021 |  |  |  |  |  |  |            |
| Lab Number                            | 3166042                                       | 3203516    | 3166047   |  |  |  |  |  |  |            |
| Hours on Engine                       |                                               | 183147     | 177366    |  |  |  |  |  |  |            |
| Hours on Fluid                        |                                               | 5781       | Unknown   |  |  |  |  |  |  | Normal     |
| Condition                             |                                               | Marginal   | Marginal  |  |  |  |  |  |  | Values     |
| FLUID CONDITION                       |                                               |            |           |  |  |  |  |  |  |            |
| Glycol % (R)                          | 49.4                                          | 49.8       | 48.4      |  |  |  |  |  |  | 50.0       |
| Freezing Point °C (R)                 | -36                                           | -37        | -35       |  |  |  |  |  |  | < -30      |
| Boiling Point °C (R)                  | 107                                           | 107        | 107       |  |  |  |  |  |  | > 100      |
| pH <sup>(G)</sup>                     | 10.0                                          | 8.2        | 8.7       |  |  |  |  |  |  | 7.0 - 11.0 |
| OBSERVATIONS (analyst rating) IWI-520 |                                               |            |           |  |  |  |  |  |  |            |
| Color                                 | Pink                                          | Red        | Red       |  |  |  |  |  |  |            |
| Visual Clarity                        | Clear                                         | Clear      | Clear     |  |  |  |  |  |  | Clear      |
| Visible Foam                          | None                                          | None       | None      |  |  |  |  |  |  | None       |
| Visible Oil                           | None                                          | None       | None      |  |  |  |  |  |  | None       |
| Fuel Odor                             | None                                          | None       | None      |  |  |  |  |  |  | None       |
| Magnetic Particles                    | None                                          | None       | Slight    |  |  |  |  |  |  | None       |
| Non-Magnetic Particles                | None                                          | None       | None      |  |  |  |  |  |  | None       |
| CONTAMINATION                         |                                               |            |           |  |  |  |  |  |  |            |
| Specific Conductance (N)              | 1991                                          | 2124       | 2167      |  |  |  |  |  |  | < 6600     |
| Total Dissolved Solids (N)            | 1045                                          | 1115       | 1138      |  |  |  |  |  |  | < 3400     |
| Calcium <sup>(E)</sup>                | -                                             | 3          | 14        |  |  |  |  |  |  | < 60       |
| Magnesium (E)                         | -                                             | 2          | 3         |  |  |  |  |  |  | < 20       |
| Hardness as CaCO <sup>3 (E)</sup>     | -                                             | 30         | 93        |  |  |  |  |  |  | < 250      |
| Chloride <sup>(A)</sup>               | 9                                             | 9          | 29        |  |  |  |  |  |  | < 75       |
| Fluoride <sup>(A)</sup>               | 16                                            | 2          | 16        |  |  |  |  |  |  | < 30       |
| Sulfate <sup>(A)</sup>                | 10                                            | 103        | 56        |  |  |  |  |  |  | < 300      |
| DEGRADATION (mg/L) Ion                | Chromatograp                                  | hy IWI-500 |           |  |  |  |  |  |  |            |
| Glycolate <sup>(A)</sup>              | 0                                             | 305        | 129       |  |  |  |  |  |  | < 1500     |
| Acetate <sup>(A)</sup>                | 0                                             | -          | 0         |  |  |  |  |  |  |            |
| Oxalate <sup>(A)</sup>                | 0                                             | 12         | 8         |  |  |  |  |  |  | < 50       |
| Formate (A)                           | 0                                             | 38         | 20        |  |  |  |  |  |  | < 250      |



Machine Name: 1612

Machine ID:

# **COMPREHENSIVE COOLANT ANALYSIS**

|                           |               | 1         |           |  |  |  |        |
|---------------------------|---------------|-----------|-----------|--|--|--|--------|
| Sample Date               | New Fluid     | 5/14/2021 | 3/31/2021 |  |  |  |        |
| Lab Number                | 3166042       | 3203516   | 3166047   |  |  |  |        |
| Hours on Engine           |               | 183147    | 177366    |  |  |  |        |
| Hours on Fluid            |               | 5781      | Unknown   |  |  |  | Normal |
| Condition                 |               | Marginal  | Marginal  |  |  |  | Values |
| ADDITIVES (INORGANIC)     |               |           |           |  |  |  |        |
| Nitrate <sup>(A)</sup>    | 410           | 652       | 449       |  |  |  |        |
| Molybdenum <sup>(E)</sup> | 2             | -         | 4         |  |  |  |        |
| Nitrite (Test Kit) (J)    |               |           |           |  |  |  |        |
| Nitrite (A)               | 1229          | 1640      | 1261      |  |  |  |        |
| Phosphate <sup>(A)</sup>  | 0             | 50        | 43        |  |  |  |        |
| Phosphorus <sup>(E)</sup> | 12            | 29        | 24        |  |  |  |        |
| Boron (E)                 | 247           | 225       | 243       |  |  |  |        |
| Silicon (E)               | 161           | 61        | 66        |  |  |  |        |
| Sodium (E)                | 1501          | 1277      | 1488      |  |  |  |        |
| Potassium (E)             | -             | 65        | 55        |  |  |  |        |
| SCA Number <sup>(U)</sup> | 1.2           | 1.6       | 1.3       |  |  |  |        |
| ORGANIC ACID TECHNOLO     | GY (mg/L) HPL | C IWI-510 |           |  |  |  |        |
| 2-Ethylhexanoic Acid      | 0             | -         | 0         |  |  |  |        |
| 4-tBu-Benzoic Acid        | 0             | 27        | 39        |  |  |  |        |
| Adipic Acid               | 0             | -         | 0         |  |  |  |        |
| Benzoic Acid              | 218           | 497       | 537       |  |  |  |        |
| Octanoic Acid             | 0             | -         | 0         |  |  |  |        |
| p-Toluic Acid             | 14            | 26        | 39        |  |  |  |        |
| Sebacic Acid              | 593           | -         | 0         |  |  |  |        |
| BT                        | 18            | 31        | 47        |  |  |  |        |
| MBT                       | 246           | -         | 0         |  |  |  |        |
| TT                        | 314           | 310       | 439       |  |  |  |        |
| WEAR (ppm) ICP Spectrosc  | opy IWI-101   |           |           |  |  |  |        |
| Aluminum (E)              | -             | -         | -         |  |  |  | < 5    |
| Copper (E)                | -             | -         | -         |  |  |  | < 5    |
| Iron <sup>(E)</sup>       | -             | -         | -         |  |  |  | < 10   |
| Lead <sup>(E)</sup>       | -             | -         | -         |  |  |  | < 5    |
| Silver (E)                | -             | -         | -         |  |  |  | < 5    |
| Tin <sup>(E)</sup>        | -             | -         | -         |  |  |  | < 5    |
| Zinc (E)                  | -             | -         | -         |  |  |  | < 10   |

Report Key: (-) Below detection limit, (A) mg/L - Ion Chromatography ASTM D5827 Mod, (E) ppm - ICP Spectroscopy IWI-101, (G) pH units IWI-142, (J) mg/L IWI-320, (N) uS/cm IWI-480, (R) Calculated from refractive index IWI-134, (J) Calculated from nitrite and molybdenum, (BT) Benzotriazole, (MBT) Mercaptobenzothiazole, (TT) Tolyltriazole



## **COMPREHENSIVE COOLANT ANALYSIS**

#### REPORT REFERENCE

Fluid Condition

Glycol concentration shows whether the right mix ratio is being employed; when lower than expected there is likely inadequate protection for the cooling system and engine, and when higher than expected there will be a loss of heat transfer. Freeze and boiling points are dependent on glycol % and hint at the expected operating temperature range, and pH is the primary indicator for degradation and/or contamination.

Observations

Color, clarity and foam provide an overview of the physical appearance of the coolant, as any change indicates likely degradation and/or contamination. Odors are checked for signs of contamination due to adverse conditions within the cooling system. Particles can appears for a number of reasons including a poor source of water, corrosion, cavitation or defective electrical grounds.

Contamination

Conductivity increasing indicates contamination originating from the water supply, such as hardness and fluoride, or combustion gases; sudden changes may be the result of overdosing inhibitor or concentrate, or mixing with another coolant. The presence of these contaminants can lead to scale and/or corrosion within the cooling system.

Degradation

Glycolate indicates the primary breakdown of the glycol portion of the coolant which is generally caused by localized overheating or an air leak (i.e., combustion blow-by) within the system. Acetate, oxalate and formate are all signs degradation has progressed to a more severe, secondary stage of degradation.

Additives

The presence and concentration of additives will vary from one coolant to another and should be compared to the new fluid reference; the presence of additives not seen in the new fluid reference indicate likely mixing with another coolant and may void the OEM warranty.

Organic Acid Technology

The presence and concentration of these additives will appear in some Extended Life Coolants (ELC) and should be compared to the new fluid reference.

Wear

Wear metals are most commonly signs of corrosion (driven by low or incorrect additives) or cavitation (driven by air leaks). They may also appear due to grounding faults, localized hot spots or poor water supply.